Съдържание
6 отношения: Крива, Трактриса, Хипотрохоида, Хипоциклоида, Епитрохоида, Епициклоида.
Крива
Тризъбецът на Нютон е пример за равнинна алгебрична крива от трета степен Крива в математиката е понятие, което се опитва да дефинира формално интуитивната представа за едномерен и непрекъснат обект.
Виж Циклоида и Крива
Трактриса
Конструкция на трактриса Трактрисата е равнинна трансцендентна крива, дефинирана за пръв път от Клод Перо по следния начин: „Да се намери кривата, по която се движи хоризонтална равнина точка закрепена към края на нишка, чийто втори край се движи по права, лежаща в същата равнина“.
Хипотрохоида
Конструкция на хипотрохоида при ''R.
Хипоциклоида
Конструкция на хипоциклоида В геометрията, хипоциклоида е равнинна крива, която се дефинира като геометричното място на фиксирана точка от окръжност, която се търкаля по вътрешната страна на друга окръжност, наречена направляваща, с радиус по-голям от радиуса на първата.
Епитрохоида
В геометрията епитрохоида е равнинна трансцендентна крива, описана от точка фиксирана спрямо окръжност, която се търкаля по външната страна на друга, направляваща, окръжност.
Епициклоида
Конструкция на епициклоида Епициклоида в геометрията е равнинна крива от четвърта степен, получена като геометричното място на фиксирана точка от окръжност, наречена епицикъл, която се търкаля от външната страна на друга окръжност, наречена направляваща, с радиус равен или по-голям от радиуса на епицикъла.