Многообразие и Област на определение на функция
Комбинации: Разлики, Приликите, Jaccard Сходство коефициент, Препратки.
Разлика между Многообразие и Област на определение на функция
Многообразие vs. Област на определение на функция
Върху сфера, сумата на ъглите на един триъгълник не е равна на 180°. Сферата не е евклидово пространство. Локално, обаче, законите от евклидовата геометрия са добри приближения. Сумата от ъглите на малък триъгълник върху повърхността на земята е много близка до 180°. Сферата може да се представи като съвкупност от двумерни карти, следователно сферата е многообразие. В математиката, многообразие е пространство, което „отблизо“ прилича на пространствата, описани в евклидовата геометрия, но което глобално може да има много по-сложна структура (Евклидовите пространства, обаче, също са многообразия). Илюстрация на ''f'', функция от розовата област ''X'' в синята кообласт ''Y''. Жълтият овал в ''Y'' е образът на ''f''. В математиката, област на определение на функция (също дефиниционна област и дефиниционно множество) е множество от стойности, за които дадена функция е определена.
Прилики между Многообразие и Област на определение на функция
Многообразие и Област на определение на функция има 0 общи неща (в Юнионпедия).
Списъкът по-горе отговори на следните въпроси
- Какво Многообразие и Област на определение на функция са по-чести
- Какви са приликите между Многообразие и Област на определение на функция
Сравнение между Многообразие и Област на определение на функция
Многообразие има 5 връзки, докато Област на определение на функция има 4. Тъй като те са по-чести 0, индекса Jaccard е 0.00% = 0 / (5 + 4).
Препратки
Тази статия показва връзката между Многообразие и Област на определение на функция. За да получите достъп до всяка статия, от която се извлича информацията, моля, посетете: